A novel and independent method for time‐resolved gantry angle quality assurance for VMAT
نویسندگان
چکیده
Volumetric-modulated arc therapy (VMAT) treatment delivery requires three key dynamic components; gantry rotation, dose rate modulation, and multi-leaf collimator motion, which are all simultaneously varied during the delivery. Misalignment of the gantry angle can potentially affect clinical outcome due to the steep dose gradients and complex MLC shapes involved. It is essential to develop independent gantry angle quality assurance (QA) appropriate to VMAT that can be performed simultaneously with other key VMAT QA testing. In this work, a simple and inexpensive fully independent gantry angle measurement methodology was developed that allows quantitation of the gantry angle accuracy as a function of time. This method is based on the analysis of video footage of a "Double dot" pattern attached to the front cover of the linear accelerator that consists of red and green circles printed on A4 paper sheet. A standard mobile phone is placed on the couch to record the video footage during gantry rotation. The video file is subsequently analyzed and used to determine the gantry angle from each video frame using the relative position of the two dots. There were two types of validation tests performed including the static mode with manual gantry angle rotation and dynamic mode with three complex test plans. The accuracy was 0.26° ± 0.04° and 0.46° ± 0.31° (mean ± 1 SD) for the static and dynamic modes, respectively. This method is user friendly, cost effective, easy to setup, has high temporal resolution, and can be combined with existing time-resolved method for QA of MLC and dose rate to form a comprehensive set of procedures for time-resolved QA of VMAT delivery system.
منابع مشابه
VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests
In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry-mounted IBA MatriXX with attached inclinometer was used in movie mode ...
متن کاملTime‐resolved beam symmetry measurement for VMAT commissioning and quality assurance
In volumetric-modulated arc therapy (VMAT) treatment delivery perfect beam symmetry is assumed by the planning system. This study aims to test this assumption and present a method of measuring time-resolved beam symmetry measurement during a VMAT delivery that includes extreme variations of dose rate and gantry speed. The Sun Nuclear IC Profiler in gantry mount was used to measure time-resolved...
متن کاملAn EPID‐based system for gantry‐resolved MLC quality assurance for VMAT
Multileaf collimator (MLC) positions should be precisely and independently mea-sured as a function of gantry angle as part of a comprehensive quality assurance (QA) program for volumetric-modulated arc therapy (VMAT). It is also ideal that such a QA program has the ability to relate MLC positional accuracy to patient-specific dosimetry in order to determine the clinical significance of any dete...
متن کاملComparisons of volumetric modulated arc therapy (VMAT) quality assurance (QA) systems: sensitivity analysis to machine errors
BACKGROUND In volumetric modulated arc therapy (VMAT), gantry angles, dose rate and the MLC positions vary with the radiation delivery. The quality assurance (QA) system should be able to catch the planning and machine errors. The aim of this study was to investigate the sensitivity of three VMAT QA systems to machine errors. METHODS Several types of potential linac machine errors unique to V...
متن کاملUltrafast treatment plan optimization for volumetric modulated arc therapy (VMAT).
PURPOSE To develop a novel aperture-based algorithm for volumetric modulated are therapy (VMAT) treatment plan optimization with high quality and high efficiency. METHODS The VMAT optimization problem is formulated as a large-scale convex programming problem solved by a column generation approach. The authors consider a cost function consisting two terms, the first enforcing a desired dose di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 18 شماره
صفحات -
تاریخ انتشار 2017